도클 ${ }^{\circledR}$ The Brand You Can Rely on

FBs - Series

Programmable Logic Controller

- Cutting edge PLC
- State of the art technology
- Compact \& Powerful
- Extensive product range
- Reliable \& Durable

Contents

Features 01
System Configuration 03
General Specifications 05
Main Unit Specifications

- Basic Main Units (MA) 09
- Basic Main Units (MA/MB) 09
- Advanced Main Units (MC) 09
- NC Positioning Main Units (MN) 10
Right Side Expansion Module Specifications
- DIO Expansion Units 10
- Power Supplies for Expansion Modules 11
- DIO Expansion Modules 11
- Thumbwheel Switch Module 11
- 16/7 Segment LED Display Modules 12
- AIO Modules 12
- Temperature Measurement Modules 12
- AI + Temperature Measurement Combo Modules 13
- Voice Module 13
- Load Cell Module 13
- Potential Meter Module 13
Left Side Expansion Module Specifications
- General Communication Boards/Modules 13
- Ethernet Communication Boards/Modules 14
- CANopen ${ }^{\circledR}$ Communication Board 14
- ZigBee ${ }^{\text {TM }}$ Communication Modules 14
- GSM Communication Module 14
- General Purpose Communication Modules 14
- AIO Boards 15
-3-Axis Motion Control Module 15
- Precision Load Cell Module 15
- Handheld Programming Panel 15
- Simple HMI 15
Peripheral and Accessory Specifications
- RFID Card 16
- PWMDA 16
- Memory Pack 16
- USB-RS232 Converter Cable 16
- Communication Cable 16
- High Density DIO Connection Cable 16
- 16/7 Segment LED Display 16
- Training Box 17
Program Development Software WinProladder 18
Instruction Sets 19
Dimensions 21
Model List 23
"Quality" and "Functionality"

Features

SoC-FATEK's Core Technology

The FBs-PLC's design incorporates a "System on Chip" (SoC) developed in-house by Fatek Corporation. The BGA chip consists of over 120,000 gates which integrates powerful features such as a Central Processing Unit (CPU), Memory, Hardware Logic Solver (HLS), 5 high-speed communication ports, 4 sets of hardware high-speed counters/timers, 4 axes of high-speed pulse outputs for NC positioning control (with linear interpolation), 16 high-speed interrupts and captured inputs. The FBsPLC represents high functionality and reliability with exceptional value compared to other PLC's in its class.

User friendly and powerful instruction sets

The FBs-PLC has more than 300 instructions which adopts a user friendly and readable multi-input/multi-output function structure. With this multi-input instruction structure the user can derive many types of functionality which other brands of PLC's may require the use of many instructions to achieve this. Also the operation result can be directly sent to internal or external outputs. To increase the program readability, the inputs or outputs for each function instruction have their own mnemonic symbol attached and the content of each operand is also displayed. For high-end applications, such as PLC networking (LINK), PID control and NC positioning etc, the FBs-PLC provides dedicated convenient instructions to assist in program development.

Communication function (up to 5 ports including RS232, RS485, USB, Ethernet, CANopen ${ }^{\circledR}$ and GSM and ZigBee ${ }^{\text {TM }}$ wireless communication)

Via the five high-speed communication ports included in the SoC, the FBsPLC's communication capability is outstanding operating at a maximum speed of 921.6 Kbps . Communications can be achieved using ASCII code or the double-speed binary code. Along with FATEK's standard protocol, Modbus ASCII/RTU/TCP or user-definable protocols are also available. The FBs-PLC also provides the option of 8 different communication boards and 10 different communication modules for various types of communication applications. With their high speed and functionality the FBs-PLC has the greatest number of communication ports than any other PLC in its class. Each communication port comes standard with LED indicators for transmission (TX) and reception (RX) to enable the user to monitor the operation.

Up to 4 sets of high-speed pulse width modulation (HSPWM) output

The SoC inside the FBs-PLC incorporates four sets of hardware high-speed pulse width modulation outputs with a maximum frequency of 184.32 KHz and 18.432 KHz with resolutions of 1% and 0.1%, respectively. Different from the PWM function operated by software alone in other brands of PLC's, the hardware driven high-speed PWM in the FBs-PLC provides the user with easy control with high precision and stability.

PLC \& NC Control in one and Dedicated NC Positioning Language

NC Position Control is incorporated into the SoC of the FBs-PLC which integrates PLC+NC control into one unit in order for resources sharing and reducing the need of data exchange. The NC position control adopts special positioning command language, which allows programming by mechanical or electrical units and the changing control of parameters during execution. One single unit has up to four axes outputs with a maximum frequency of $200 \mathrm{KHz}(\mathrm{MC})$ or $920 \mathrm{KHz}(\mathrm{MN})$ and equipped with multi-axis linear interpolation function. If combined with the four sets of built-in HHSC, it can achieve a fully closed loop positioning control!

Integrated high-speed counters with counting frequency up to 920 KHz

The FBs-PLC includes up to 4 sets of hardware high-speed counters (HHSC) and 4 sets of software high-speed counters (SHSC). The highest counting frequency of a HHSC is $200 \mathrm{KHz}(\mathrm{MC})$ or $920 \mathrm{KHz}(\mathrm{MN})$. Each HHSC also has a clear and mask function. There are 8 counting modes including U/D, U/ $D \times 2, P / R, P / R \times 2, A / B, A / B \times 2, A / B \times 3$ and $A / B \times 4$ which makes the HHSC very powerful and efficient. For example, if the encoder, running at 200 pulses per revolution, adopts A/Bx4 mode the FBs-PLC can achieve the same result that 800 pulses per revolution encoder can provide. The counter is implemented in the hardware so as not to occupy CPU processing time. In addition, 4 sets of software high-speed counters (SHSC) has U/D, P/R, A/B 3 types of counting modes and the total counting frequency is 5 KHz .

High-speed timers (HST)

The FBs-PLC is the only PLC in this class providing 0.1 mS high-speed timers (the FBs-PLC having one 16 -bit and 4 sets of 32 -bit HST). Currently, the fastest time base of high speed timers used in other brands of PLC's is 1 mS . By incorporating the interrupt function of the FBs-PLC the accuracy of 0.1 mS time base high-speed timer of FBs-PLC is further enhanced and can easily achieve more precise speed detection or can be used as a frequency meter. In most cases, expensive speed detection equipment can be replaced by the economical FBs-PLC.

FATEK's Powerful Communication Features

The five communication ports in FBs-PLC can simultaneously connect to various intelligent peripherals with various interfaces such as USB, RS232, RS485, Ethernet, CANopen® and ZigBee ${ }^{\text {TM }}$. Apart from the FATEK and Modbus protocol or communication through the FATEK communication server, the user can also use the PLC's CLINK instruction for user-defined protocol to actively or passively establish connections with many intelligent peripherals.

Open communication driver

The open communication protocol of the FBs-PLC is supported by all major brands of Supervisory Software (Scada) and Operator Terminals (HMI). Scada software such as Wonderware, Citec, Labview and LabLink! Operator terminals (HMI) such as Proface, Hitech/Beijer and Cermate can be directly connected with the FBs-PLC via serial and Ethernet interfaces. FATEK also provides FATEK DDE standard communication server or thirdparty OPC server for the user to easily connect the FBs-PLC to various control or supervisory systems. In addition, reputable companies such as National Instruments and KONTRON both sell FATEK OPC software package for users.

Complete range of peripherals

In addition to over 200 models of main CPU units, the FBs-PLC also provides about 100 models of expansion I/O for selection. The expansion I/O modules include basic DI/O, AI/O and other communication modules, also include thumbwheel switch input module, 16/7 segment LED display module, 8 types (J, K, R, S, E, T, B, N) thermocouple, Pt100, Pt1000 RTD temperature measurement modules. There is also a new additions to the range including load cell module used in weighting, potential meter module used in measuring position, and a user-friendly voice module. The FBsPLC also provides a FBs-DAP or FBs- PEP simple HMI which can be linked together with a single RS485 bus. The FBs-DAP or FBs-PEP can be a simple Timer/Counter editor or it can also be used as a simple human machine interface through the function of user definable keys and message display. The FBs-DAP or FBs-PEP can be equipped with a wireless RFID sensing module and can be applied to such applications as entrance control, parking equipment and elevator control amongst others.

User-friendly operating environment

"WinProladder" is the Windows-based ladder diagram programming software for the FBs-PLC. It provides a user-friendly operating environment with editing, monitoring and debugging functions which allows the user to become familiar with the operation of the software in a very short time. The powerful editing function of WinProladder, assisted with keyboard, mouse and on-line help (of ladder instructions and operating guide) greatly reduces programming development time. Features which can display the data registers directly in the ladder diagram and provide multiple status pages for monitoring gives the user the ability to monitor and debug easily.

Up to 36 points of captured input

The SoC in the FBs-PLC has a captured input function, which captures and stores the external pulse of an input shorter than the scanning time of the CPU. Compared to PLC's in this class that either lack this capability or require highly sophisticated interrupt functions (which increase the CPU processing time), the FBs-PLC can handle this task easily as a general input, easily configured with high efficiency and no detriment the CPU scan time.

Single unit with 16 points of high-speed interrupt

The FBs-PLC provides 16 points of external interrupts. The interrupt is edge driven and the user can define which edge triggers the interrupt and can be positive, negative or both edges. The interrupts can perform high speed, emergency processing which can withstand the time jilter caused by the delay and deviation of the scan time and can be used for precision high speed positioning, machine home and high speed RPM measurement applications.

FATEK
 General Specifications

Environmental specifications

Item			Specification	Note
Operating ambient temperature	Enclosure space	Minimum	$5^{\circ} \mathrm{C}$	Permanent installation
		Maximum	$40^{\circ} \mathrm{C}$	
	Open space	Minimum	$5^{\circ} \mathrm{C}$	
		Maximum	$55^{\circ} \mathrm{C}$	
Storage temperature			$-25 \sim 70^{\circ} \mathrm{C}$	
Relative humidity(non-condensing, RH-2)			5~95\%	
Pollution resistance			Degree II	
Corrosion resistance			Base on IEC-68 standard	
Altitude			s2000m	
Vibration resistance	Fixed by DIN RAIL		$0.5 \mathrm{G}, 2$ hours for each direction of 3 axes	
	Fasten by screw		$2 \mathrm{G}, 2$ hours for each direction of 3 axes	
Shock resistance			10G, three times for each direction of 3 axes	
Noise resistance			1500 Vp-p, pulse width $1 \mu \mathrm{~S}$	
Withstand voltage			1500VAC, 1 minute	L, N to any terminal

AC power supply specifications

Item		$10 / 14$ points main units	$20 / 24$ points main units	$32 / 40$ points main units
Input range	Voltage		$100 \sim 240 \mathrm{VAC},-15 \% /+10 \%$	

DC power supply specifications

Specification	10/14 points main units	20/24 points main units	32/40 points main units	60 points main units
Input voltage	12 or 24 VDC, $-15 \% /+20 \%$			
Max. power consumption (@ full built-in power supply)	21W(SPW14-D12/D24)	36W(SPW24-D12/D24)		
Inrush current	20A@12 or 24VDC			
Allowable power momentary interruption time	$<2 \mathrm{mS}$			
Fuse rating	3A(D12)/1.5A(D24),125V	5A(D12)/2.5A(D24),125V		

Main unit specifications

* : Default, changable by user

Item			Specification	Note
Execution speed			$0.33 \mathrm{uS} /$ Sequential instruction	
Program capacity			20K Words	
Program memory			FLASH ROM or SRAM + Lithium battery for Back-up	
Sequential instruction			36 instructions	
Function instruction			326 instructions (126 kinds)	Include derivative instructions
Flow chart command (SFC)			4 instructions	
Communication Interface	Port 0 (RS232 or USB)		Communication speed 4.8k ~ 115.2Kbps (9.6Kbps)*	
	Port 1 ~ Port 4 (RS232, RS485 , Ethernet, CANopen or GSM)		Communication speed $4.8 \mathrm{k} \sim 921.6 \mathrm{Kbps}$ (9.6Kbps)*	Port1 ~ 4 provides FATEK or Modbus RTU/ASC II or user defined communication protocol
	Maximum link stations		254	
Digital (Bit status)	X	Input contact (DI)	X0~X255 (256)	Corresponding to external digital input
	Y	Output relay (D0)	Y0~Y255 (256)	Corresponding to external digital output
	TR	Temporary relay	TR0~TR39 (40)	

Item						Spe	cation		Note		
	M	Internal relay		Non-retentive	M0 ~ M799 (800)*				Can be configured as retentive type		
					M1400 ~ M1911 (512)						
				Retentive	M800 ~ M1399 (600)*				Can be configured as non-retentive type		
		Special relay			M1912 ~ M2001 (90)						
	S	Step relay		Non-retentive	S0 ~ S499 (500)*				S20 ~ S499 can be configured as retentive type		
				Retentive	S500 ~ S999 (500)*				Can be configured as non-retentive type		
	T	Timer "Time-Up" status contact			T0 ~ T255 (256)						
	C	Counter "Count-Up" status contact			C0 ~ C255 (256)						
	TMR	Timer current value register	0.01S Time base		T0 ~ T49 (50)*				T0 ~ T255 numbers for each time base can be adjusted.		
			0.1S Time base		T50 ~ T199 (150)*						
			1S Time base		T200 ~ T255 (56)*						
	CTR	Counter current value register	16-bit	Retentive	C0 ~ C139 (140)*				Can be configured as non-retentive type		
				Non-retentive	C140 ~ C199 (60)*				Can be configured as retentive type		
			32-bit	Retentive	C200 ~ C239 (40)*				Can be configured as non-retentive type		
				Non-retentive	C240~C255 (16)*				Can be configured as retentive type		
	$\begin{aligned} & \text { HR } \\ & \text { DR } \end{aligned}$	Retentive			R0 ~ R2999 (3000)*				Can be configured as non-retentive type		
					D0 ~ D3999 (4000)						
		Data register		Non-retentive	R3000 ~ R3839 (840)*				Can be configured as retentive type		
	$\begin{gathered} \text { HR } \\ \text { ROR } \end{gathered}$			Retentive	R5000 ~ R8071 (3072)*				When not configured as ROR, it can serve normal register (for read/write)		
				Read only register	R5000 ~ R8071 can be set as ROR ~ default setting is (0)*				ROR is stored in special ROR area and not occupy program space		
				File register	F0 ~ F8191 (8192)				Save/retrieved via dedicated instruction		
	IR	Input register			R3840 ~ R3903 (64)				Corresponding to external numeric input		
	OR	Output register			R3904 ~ R3967 (64)				Corresponding to external numeric output		
	SR	Special system register			R3968 ~ R4167 (197), D4000 ~ D4095 (96)						
		0.1 mS high-speed timer register			R4152 ~ R4154 (3)						
		High-speed counter register		rdware (4 sets)	DR4096 ~ DR4110 (4×4)						
				ftware (4 sets)	DR4112 ~ DR4126 (4x4)						
		Calendar Register			R4128 (sec)	R4129 (min)	R4130 (hour)	R4131 (day)	Optional for MA model		
					R4132 (month)	R4133 (year)	R4143 (week)				
	XR	Index register			V. Z (2), P0 ~ P9 (10)						
Interrupt control		External interrupt control			32 interrupts (16 points input positive/negative edge)						
		Internal interrupt control			8 interrupts ($1,2,3,4,5,10,50,100 \mathrm{mS}$)						
0.1 mS high speed timer(HST)					1 (16-bit), 4 (32-bit, share with HHSC)						
	Hardware high-speed counter (HHSC) /32-bit			of channel	Up to 4				- Total number of HHSC and SHSC is 8 HHSC can be converted into 32 -bit/ 0.1 mS time base High-Speed Timer (HST) - Half of maximum frequency while A / B input		
				unting mode	8 modes (U/D,	Dx2, P/R, P/Rx	, ${ }^{\text {, }} \mathrm{A} / \mathrm{Bx} 2, \mathrm{~A} / \mathrm{B}$	A/Bx4)			
				unting frequency	Maximum is 200 (differential in	KHz (Single-en t)	nput) or 920 KH				
	Software high-speed counter (SHSC) /32-bit			of channel	Up to 4						
				unting mode	3 modes (U/D,	R, A / B)					
				unting frequency	Maximum sum	p to 5 KHz					
NC position pulse out (HSPSO)		Number of axis			Up to 4						
		Output frequency			Maximum is 200 KHz (Single-end output) or 920 KHz (differential output)				Half of the maximum while A / B output		
		Pulse output mode			3 modes (U/D, P/R, A/B)						
		Programming method			Dedicated position language						
		Interpolation			Maximum 4 axes linear interpolation						
HSPWM output		Number of points			Up to 4						
		Output frequency			$72 \mathrm{~Hz} \sim 18.432 \mathrm{KHz}$ (with 0.1% resolution) $720 \mathrm{~Hz} \sim 184.32 \mathrm{KHz}$ (with 1% resolution)						
Captured input			Points		Maximum 36 points (All inputs in main unit are suitable this feature)						
			Minimum capturable Pulse width		$>10 \mu \mathrm{~S}$ (for ultra high speed / high speed input)						
			$>47 \mu \mathrm{~S}$ (for Medium speed input)								
			>470 $\mu \mathrm{S}$ (for Medium low speed input)								
Digital filter					X0 ~ X15		Adjustable freq	ency 14 KHz ~	MHz		Chosen by frequency at high frequency
					Adjustable tim	constant 0 ~ 1.5	S/0~15mS (un	0.1mS/1mS)	Chosen by time constant at low frequency		
				~ X35			Time constant	$\sim 15 \mathrm{mS}$ adjust	(unit: 1 ms)		

General Specifications

Digital Input (DI) Specifications

Specification		5VDC differential input	24VDC single-end input				Notes
		Ultra high speed	High speed	Medium speed(HSC)	Medium Low speed (capture input)	Low speed	
Maximum input frequency*/ accumulated time		920KHz	200 KHz	$\begin{gathered} 20 \mathrm{KHz}(\mathrm{HHSC}) \\ \text { Total } 5 \mathrm{KHz}(\mathrm{SHSC}) \end{gathered}$	0.47 mS	4.7 mS	*: Half of maximum frequency while A / B phase input
Input signal voltage		$5 \mathrm{VDC} \pm 10 \%$	$24 \mathrm{VDC} \pm 10 \%$				
Threshold current	ON	$>11 \mathrm{~mA}$	$>8 \mathrm{~mA}$	$>4 \mathrm{~mA}$		$>2.3 \mathrm{~mA}$	
	OFF	$<2 \mathrm{~mA}$		$<1.5 \mathrm{~mA}$		$<0.9 \mathrm{~mA}$	
Maximum input current		20 mA	10.5 mA	7.6 mA		4.5 mA	
Input indication		Displayed by LED: light when "ON" , dark when "OFF"					
Isolation method		Photocouple isolation, 500VAC, 1 minute					
SINK/SOURCE wiring		Independent wiring	Via variation of internal common terminal S / S and external common wiring				
Noise filtering methods		$\begin{aligned} & \text { DHF }(0 \sim 15 \mathrm{mS}) \\ & + \text { AHF }(0.47 \mu \mathrm{~S}) \end{aligned}$		$\begin{aligned} & \text { DHF (} 0 \sim 15 \mathrm{mS} \text {) } \\ & \text { +AHF }(4.7 \mu \mathrm{~S}) \end{aligned}$	$\begin{aligned} & \text { DHF (} 0 \sim 15 \mathrm{mS}) \\ & + \text { AHF }(0.47 \mathrm{mS}) \end{aligned}$	AHF (4.7 mS)	DHF: Digital Hardware Filter AHF: Analog Hardware Filter

Wiring of 5VDC differential input (with frequency up to 920 KHz , for high speed or high noise environments)

Wiring of 5VDC differential input to 5VDC single-end
SINK/SOURCE input (Max. 200KHz)

Wiring of 24VDC single-end SINK input

Wiring of 5VDC differential input to 24VDC single-end
SINK /SOURCE input (Max. 200KHz)

Wiring of 24VDC single-end SOURCE input

General Specifications

Digital Output (DO) Specifications

Specification Item		Differential output	Single-end transistor output			Single-end relay output
		Ultra high speed	High speed	Medium speed	Low speed	
Maximum output frequency*		920 KHz	200 KHz	20 KHz	-	-
Working voltage		5VDC $\pm 10 \%$	5~30 VDC			<250VAC/30VDC
Maximum load current	Resistive	50 mA	0.5A	0.5A	0.5A/0.1A (24YT/J)	2A/single, 4A/common
	Inductive					$80 \mathrm{VA}(\mathrm{AC}) / 24 \mathrm{VA}(\mathrm{DC})$
Maximum voltage drop/ conducting resistance		-	0.6 V	2.2 V	2.2 V	0.06 V (initial)
Minimum load		-	-			$2 \mathrm{~mA} / \mathrm{DC}$ power
Leakage current		-	$<0.1 \mathrm{~mA} / 30 \mathrm{VDC}$			-
Maximum output delay time	ON \rightarrow OFF	200ns	$2 \mu \mathrm{~S}$	154S		10 mS
	OFF \rightarrow ON			30 S		
Output status indication		Displayed by LED: Light when "ON", dark when "OFF"				
Over current protection		N/A				
Isolation type		Photocouple isolation, 500VAC, 1 minute				Electromagnetic isolation 1500VAC, 1 minute
SINK/SOURCE output type		Independent dual terminals for arbitrary connection	Choose SINK/SOURCE by models and non-exchangeable			Can be arbitrarily set to SINK/SOURCE output

*: Half of the maximum frequency while A / B phase output

Wiring of transistor single-end SINK output

Wiring of transistor single-end SOURCE output

Wiring of relay single-end output

Fatek Main Unit Specifications

Basic Main Units (MA)										
Specification Model			FBs-10MAR	FBs-10MAT/J	FBs-14MAR	FBs-14MAT/J	FBs-20MAR	FBs-20MAT/J	FBs-24MAR	FBs-24MAT/J
믗	24VDC	$\begin{aligned} & \text { Medium speed } \\ & (20 \mathrm{KHz}) \\ & \hline \end{aligned}$	4 points				6 points		8 points	
言		Medium speed (Total 5KHz)	2 points		4 points		6 points			
믄읓은듣		Relay	4 points	-	6 points	-	8 points	-	10 points	-
	Transistor	Medium speed (20KHz)	-	4 points	-	6 points	-	8 points	-	8 points
		Low speed	-	-	-	-	-	-	-	2 points
Communication Port		Built-in	1 port (Port0, USB or RS232)							
		Expandable	2 ports (Port1~2, RS485 or RS232 or Ethernet)							
Calendar			optional							
Built-in power supply			SPW14-AC/D12/D24				SPW24-AC/D12/D24			
Wiring mechanism			7.62 mm fixed terminal block							
Dimension			Figure 2				Figure 1			

Basic Main Units (MA/MB)

Advanced Main Units (MC)

Specification		Mode
$\begin{aligned} & \text { 믈 } \\ & \underline{\overline{\#}} \\ & \text { 言 } \\ & \text {. } \end{aligned}$	24VDC	High speed (200KHz)
		Medium speed (20KHz)
		Medium speed (Total 5KHz)
믈흥응듣	Relay	
	Transistor	High speed (200KHz)
		Medium speed (20KHz)
		Low speed
Communication Port		Built-in
		Expandable
Calendar		
Built-in power supply		
Wiring mechanism		
Dimension		

Advanced Main Units (MC)								
Specification Model			FBs-32MCR	FBs-32MCT/J	FBs-40MCR	FBs-40MCT/J	FBs-60MCR	FBs-60MCT/J
	24VDC	High speed (200KHz)	6 points				8 points	
		Medium speed (20KHz)	2 points				-	
		Medium speed (Total 5KHz)	8 points					
		$\begin{gathered} \text { Medium Iow } \\ \text { speed }(0.47 \mathrm{~ms}) \end{gathered}$	4 points		8 points		20 points	
Relay			12 points	-	16 points	-	24 points	-
	Transistor	$\begin{gathered} \text { High speed } \\ (200 \mathrm{KHz}) \\ \hline \end{gathered}$	-	6 points	-	6 points	-	8 points
		$\begin{gathered} \text { Medium speed } \\ (20 \mathrm{KHz}) \\ \hline \end{gathered}$	-	2 points	-	2 points	-	-
		Low speed	-	4 points	-	8 points	-	16 points
Communication Port		Built-in	1 port (Port0, USB or RS232)					
		Expandable	4 ports (Port1~4, RS485 or RS232 or Ethernet or GSM or ZigBee)					
Calendar			Built-in					
Built-in power supply			SPW24-AC/D12/D24					
Wiring mechanism			7.62 mm detachable terminal block					
Dimension			Figure 1					

NC Positioning Main Units (MN)

Specification		Model
	5VDC Differential	Ultra high speed (920KHz)
	24VDC	High speed (200KHz)
		Medium speed (Total 5KHz)
		Low speed
믗읗은듣	Relay	
	5VDC Differential	Ultra high speed $\text { (} 920 \mathrm{KHz} \text {) }$
	Transistor	High speed (200KHz)
		Low speed
Communication Port		Built-in
		Expandable
Calendar		
Built-in power supply		
Wiring mechanism		
Dimension		

为
FBs-20MNR

FBs-20MNT/J

FBs-32MNR

FBs-32MNT/J

Right Side Expansion Module Specifications

Right Side Expansion Module Specifications

DIO Expansion Modules										
Specific	ation	Model	FBs-8XYR	FBs-8XYT/J	FBs-8X	FBs-8YR	FBs-8YT/J	FBs-16XYR	FBs-16XYT/J	FBs-20X
Digital Input	24VDC	Low Speed	4 points		8 points	-	-	8 points		20 points
Digital Output	Relay		4 points	-	-	8 points	-	8 points	-	-
	Transistor	Low Speed	-	4 points	-	-	8 points	-	8 points	-
Wiring mechanism			7.62 mm fixed terminal block							
Dimension			Figure 4					Figure 3		

(Continu									
Specification			FBs-16YR	FBs-16YT/J	FBs-24X	FBs-24YT/J	FBs-24XYR	FBs-24XYT/J	FBs-40XYR
Digital Input	24VDC	Low Speed	-	-	24 points	-			24 points
Digital Output	Relay		16 points	-	-	-	10 points	-	16 points
	High density low speed		-	-	-	24 points	-	-	-
	Transistor	Low Speed	-	16 points	-	-	-	10 points	-
Wiring mechanism			7.62 mm fixed terminal block		30 pins header with latch		7.62 mm fixed terminal block		
Dimension			Figure 3		Figure 6		Figure 1		

(Continue)						Thumbwheel Switch Module	
Specification Model			FBs-40XYT/J	FBs-60XYR	FBs-60XYT/J	Specification Model	FBs-32DGI
Digital Input	24VDC	$\begin{aligned} & \text { Low } \\ & \text { Speed } \end{aligned}$	24 points	36 points		Refresh time for input	10 mS max.
Digital Output	Relay		-	24 points	-	Input capability	points)
	Transistor	$\begin{aligned} & \text { Low } \\ & \text { Speed } \end{aligned}$	16 points	-	24 points	Input method	1/8 duty multiplexing input scan
Wiring mechanism			7.62 mm fixed terminal block			Wiring mechanism	30 pins header with latch
Dimension			Figure 1			Dimension	Figure 6

Right Side Expansion Module Specifications

16/7 Segment LED Display Modules

Specification	Model
$\begin{array}{c}\text { Display } \\ \text { mode }\end{array}$	Decoding display
	Non-decoding display
Display number of character	

Display number of character (points)			1 channel, 7 segment 8 words / 16 segment 4 words or 64 points individual LED	2 channels, 7 segment 16 words/ 16 segment 8 words or 128 points individual LED
Refresh time for display			10 mS max.	
	Drivin	gin current	40 mA / segment	
	Display	yy method	1~8 duty multiplexing display	
	Driving	Low voltage	5VDC (can be 10\% up)	
	voltage	High voltage	$7.5 \mathrm{~V}, 10 \mathrm{~V}, 12.5 \mathrm{~V}$ selectable (can be 10% up)	
	Fine tu	ne of voltage drop	$0.6 \mathrm{~V}, 1.2 \mathrm{~V}, 1.8 \mathrm{~V}$ selectable	
Over voltage driving indication			Each channel has individual Over Voltage (O.V.) driving LED indication (should be under Test Mode)	
Isolation method			Transformer (power) and photocouple (signal) isolation, 500VAC, 1 minute	
Power consumption			$24 \mathrm{VDC}-15 \% /+20 \%$, static consumption is 2W max., dynamic current is increased according to display	
Wiring mechanism			16 pins flat cable, 2.54 mm header connector	
Dimension			Figure 4	

Temperature Measurement Modules						
Specification Model	FBs-2TC	FBs-6TC	FBs-16TC	FBs-6RTD	FBs-16RTD	FBs-6NTC
Number of input points	2 points	6 points	16 points	6 points	16 points	6 points
Sensor type and temperature measurement range	Thermocouple Sensor:$\begin{gathered} \mathrm{J}\left(-200 \sim 1200^{\circ} \mathrm{C}\right) \mathrm{E}\left(-190 \sim 1000^{\circ} \mathrm{C}\right) \\ \mathrm{K}\left(-190 \sim 1300^{\circ} \mathrm{C}\right) \mathrm{T}\left(-190 \sim 380^{\circ} \mathrm{C}\right) \\ \mathrm{R}\left(0 \sim 1800^{\circ} \mathrm{C}\right) \mathrm{B}\left(350 \sim 1800^{\circ} \mathrm{C}\right) \\ \mathrm{S}\left(0 \sim 1700^{\circ} \mathrm{C}\right) \mathrm{N}\left(-200 \sim 1000^{\circ} \mathrm{C}\right) \end{gathered}$			$\begin{gathered} \text { 3-wire RTD sensor (JIS or DIN) } \\ \text { Pt100 }\left(-200 \sim 850^{\circ} \mathrm{C}\right) \\ \operatorname{Pt} 1000\left(-200 \sim 600^{\circ} \mathrm{C}\right) \end{gathered}$		NTC sensor $10 \mathrm{~K} \Omega$ at $25^{\circ} \mathrm{C}, \mathrm{B}$ optional -20~100 ${ }^{\circ} \mathrm{C}$
Temperature compensation	Built-in cold junction compensation			-	-	-
Resolution	$0.1{ }^{\circ} \mathrm{C}$					
Temperature refresh time	1 or 2 seconds	2 or 4 seconds	3 or 6 seconds	1 or 2 seconds	2 or 4 seconds	2 or 4 seconds
Overall Precision	$\pm\left(1 \%+1^{\circ} \mathrm{C}\right)$			$\pm 1 \%$		$\pm 1 \%$ of full scale at $25^{\circ} \mathrm{C}$
Isolation method	Transformer(power) and photocouple(signal) isolation, 500VAC, 1 minute, isolation between each channel			Transformer(power) and photocouple(signal) isolation, 500VAC, 1 minute, no isolation between each channel		
Power consumption	24VDC -15\%/+20\%, 2W max.					
Wiring mechanism	3.81 mm european terminal block		7.62 mm fixed terminal block			
Dimension	Figure 4		Figure 1	Figure 4	Figure 1	Figure 4

Right/Left Side Expansion Module Specifications

Al+Temperature Measurement Combo Modules		
Specification Model	FBs-2A4TC	FBs-2A4RTD
Analog input (AI) points	2 point	
Temperature measurement input points	4 points (thermocouple)	4 points (RTD)
Analog input specification	Same as FBs-6AD	Same as FBs-6AD
Temperature input specification	Same as FBs-6TC	Same as FBs-6RTD
Power consumption	24VDC-15\%/+20\%, 2W max.	
Wiring mechanism	7.62 mm fixed terminal block	
Dimension	Figure 4	

Load Cell Module	
Specification Model	FBs-1LC
Number of channel	1 channel
Resolution	16-bit (including sign bit)
Occupied I/O points	1 IR (input register) and 8 points DO
Sampling frequency	5/10/20/25/60/120/240/480 Hz optional
Non-linearity degree	0.01% full scale @ $25{ }^{\circ} \mathrm{C}$
Zero drift	$0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Gain drift	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Excitation voltage	5 V , maximum load is 250Ω
Level of sensitivity	$2 \mathrm{mV} / \mathrm{V}, 5 \mathrm{mV} / \mathrm{V}, 10 \mathrm{mV} / \mathrm{V}, 20 \mathrm{mV} / \mathrm{V}$
Filters	Moving averages
Isolation method	Transformer (power) and photocouple (signal) isolation, 500VAC, 1 minute
Power consumption	24VDC, -15\%/+20\%, 2W
Wiring mechanism	7.62 mm fixed terminal block
Dimension	Figure 4

Left Side Expansion Module Specifications

Voice Module

Specification Model		FBs-VOM
Number of recorded messages		245 messages
Sound storage device		Internal memory or external SD memory card
Maximum sound storage capacity	Internal memory	1 MB , can play up to 2 minutes of sound recordings.
	External SD memory card	Maximum 4 GB memory card, up to 8000 minutes of sound recordings can be played.
Applicable sound encoding format		Mono 8 bit 8 KHz sample
Signal output		Dual output 8Vp-p, 4Ω load 2W output
Sound input method		Computer editing, SD memory card
Sound playback control		PLC control or manual sequencing (test play)
Volume control		PLC control, total of 10 volumes
I/O points occupy		8 points DI and 8 points DO
Status display		3 LEDs
Power consumption		Internal 5V, 500mA (@2W output)
Dimension		Figure 4

Potential Meter Module

Specification Model	FBs-4PT
Number of channel	4 channels
Resolution	14 or 12 bits
Occupied I/O points	4 IR (input registers) and 1 unused OR (output register)
Conversion time	Conversion once for each scan
Accuracy	$\pm 1 \%$
Potential meter impedance	$1 \mathrm{~K} \sim 10 \mathrm{~K} \Omega$
Voltage Input Range	0~10V
Potential meter voltage	10V
Filters	Moving averages
Isolation method	Transformer (power) and photocouple (signal) isolation, 500VAC, 1 minute
Power consumption	24VDC, -15\%/+20\%, 2W
Wiring mechanism	7.62 mm fixed terminal block
Dimension	Figure 4

(Continue)			
Specification Model	FBs-CM22	FBs-CM55	FBs-CM25
RS232 Port	2 ports (Port3, Port4)	-	1 port (Port3)
RS485 Port	-	2 ports (Port3, Port4)	1 port (Port4)
Indicators	Each Port has its own TX, RX LED indicators		
Wiring mechanism	DB9F	3 pins spring terminal	DB9F, 3 pins spring terminal
Installation position	Figure 5		

Left Side Expansion Module Specifications

| CANopen ${ }^{\text {® }}$ |
| :---: | :---: |
| Communication Board |
| Specification Model |\quad| CAN 2.0A CANopen |
| :---: |
| Communication
 standard |
| Network topology |

ZigBee ${ }^{\text {TM }}$
Communication Modules

| Specification Model | FBs-CMZB |
| :---: | :---: | :---: |
| Standards | Based on IEEE 802.15.4 and ZigBee ${ }^{\text {TM }}$ standard |

FBs-CMGSM

Specification Model	FBs-CMGSM
Function	SMS, GPRS, and dial up data transfer (CSD), and etc
Frequencies	$850 / 900 / 1800 / 1900 \mathrm{MHz}$
RF power	2 W
Communication interface	Port3
Dimension	Figure 5

General Purpose Communication Modules

Specification Model	FBs-CM25C	FBs-CM5R	FBs-CM5H	
Function	General purpose RS232 to RS485 bi-directional signal converter	General purpose RS485 repeater	General purpose 1 to 3 RS485 HUB	
Indicators	Each port has its own independent TX, RX LED indicator			
External power	24VDC, -15\%/+20\%			
Wiring mechanism	DB9F, 3.81mm European terminal block	3 pins spring terminal block	7.62mm fixed terminal block	
Dimension	Figure 5			Figure 4

Left Side Expansion Module Specifications

Model			
Specification		FBs-B2DA	
Input point	-	4 points	FBs-B2A1D
Output point	2 points	-	2 points
Input / Output value		$0 \sim 1630$ (14-bit representation, valid 12-bit)	
Input / Output polar		Unipolar	
Input / Output counting range		$0 \sim 10 \mathrm{~V}$	
Conversion time		Conversion once for each scan	
Accuracy		$\pm 1 \%$	
Isolation method		Non-isolation	
Wiring mechanism		3.81 mm European terminal block	
Installation position		The expansion slot of main unit	

3-Axis Motion Control Module

Sodel	
Specification	
Number of DIO points	14 points (8 inputs/6 outputs)
Program capacity	16 M Bytes
Data Register	20K Words
High speed pulse Input	200KHz X,Y,Z 3-Axis A/B differential signal input
High speed pulse Output	$500 \mathrm{KHz} \mathrm{X,Y,Z} \mathrm{3-Axis} \mathrm{A/B} \mathrm{differential} \mathrm{signal} \mathrm{output}$
Manual input	A/B differential signal input
Communication port	RS485 x1, Ethernet x1
Built-in power supply	SPW24-AC/D12/D24
Wiring mechanism	7.62 mm detachable terminal block
Dimension	Figure 1

Precision Load Cell	dule
Specification Model	FBs-1HLC
Number of channels	1 channel
Resolution	$0.10 \mu \mathrm{~V} / 1 \mathrm{D}$ (24-bit AD)
Filters	Digital filter, sampling rate 6.25~120Hz
Measurement range	-1~39mV
Sensor voltage	$5 \mathrm{VDC} \pm 5 \%$
No. of sensor connections	350Ω sensor $\times 8$
Isolation Method	Transformer (power) and photocouple (signal) isolation, 500VAC, 1 minute
Power consumption	24VDC, $-15 \% /+20 \%$, 2W
Wiring mechanism	7.62 mm fixed terminal block
Dimension	Figure 4

Precision Load Cell Module

Specification Model	FP-08				
Main function	Program editor (Mnemonic language), status monitoring, parameters setup, program/parameter import and recording, etc.				
Max. of power consumption	$5 \mathrm{~V} / 100 \mathrm{~mA}$				
Keyboard	48 silicon rubber keys				
Display	Two rows 16 characters, dot matrix LCD display, with				
LED backlight		$	$	Recording device	FBs-PACK read/write
:---:	:---:				
Communication port	RS232 serial communication port				
Connectors	DB9F, Mini-DIN				
Dimension	Figure 7				

 Handheld Programming Panel

Simple HMI

General features	
Special features	Alarm, infor
Card access features (RFID card)	
Dimension (Installation position)	

* The PLC main unit must be of calendar built-in type

Peripheral and Accessory Specifications

RFID Card		PWMDA	
	CARD-H	Specification Model	PWMDA
Operated frequency	13.56 MHz	Output range	0~10V
Memory	64-bit with Cyclic Redundancy Check (CRC) on data	Output value	0~1000
Working temperature	-25~50 (ISO7810)	Resolution	10 mV (10V/1000)
Power source	Powered by RF	Output impedance	$1 \mathrm{~K} \Omega$
Receivable distance	$6 \sim 12 \mathrm{~cm}$	Min. load ($\geq 10 \mathrm{~V}$)	$5.2 \mathrm{~K} \Omega$
Writable times	At least 10000 times	D/A conversion time	$<50 \mathrm{mS}$

Memory Pack	1	USB-RS232 Converter Cable	
Specification Model	FBs-PACK	Specification Model	FBs-U2C-MD-180
Memory	1M bits FLASH ROM	Features	Standard USB AM connector to RS232 MD4M connector (used in standard PC USB to FBs main unit Port 0 RS232), length 180 cm
Memory capacity	20K Words program + 20K Words data		
Write protection	DIP switch ON/OFF protection		

Communication Cable

Communication Cable				
Specification Model	FBs-232P0-9F-150	FBs-232P0-9M-400	FBs-232P0-MD-200	FBs-232P0-MDR-200
Features	Dedicated communication cable for FBs main unit Port 0 (RS232) to DB9F connector, length 150 cm	Dedicated communication cable for FBs main unit Port 0 (RS232) to DB9M connector, length 400 cm	Dedicated communication cable for FBs main unit Port 0 (RS232) to FBs-PEP/PEPR Mini-DIN male connector, length 200 cm	Dedicated communication cable for FBs main unit port 0 (RS232) to FBs-PEP/PEPR 90 Mini-DIN male connector, length 200 cm

High Density DIO Connection Cable

Specification Model	HD30-22AWG-200
Features	22 AWG I/O cable with 30 pins Socket, length 200 (for FBs-24X, 24YT/J and 32DGI)

16/7 Segment LED Display

	DBAN.8-nR	DBAN2.3-nR
Features	0.8" 4-digit 16-segment LED display,, n means R(Red) 16-segment LED characters display installed, can be 1~4	2.3" 4-digit 16-segment LED display, n means R(Red) 16-segment LED characters display installed, can be 1~4

Training Box

Features:

- It contains the basic items required by PLC digital I/O training, such as the FBs-24MCT advanced main unit, the FBs-CM25E Ethernet module, digital input socket, simulated switches, and digital output socket.
- The built-in RS232, RS485 and the Ethernet three ports (can be expanded to five with communication boards) not only enable the teacher's computer to connect with the training kits of all students to conduct networking on-line teaching such as loading, monitoring, modifying, and storing, but also can be used in advanced course such as computer connection, intelligent
 ASCII peripherals as well.
- A special designed software "WinProladder teaching assistant" can let instructor download or upload ladder program to or from the PLC of the whole class or individual through computer.
- PLC output is isolated by the Relay with socket and fuse and then output to terminal. These isolations can prevent PLC from damaging caused by incorrect wiring and easy for repair and replacement.

Program Development Software

General Features

- Windows based application program following the standard conventions of a windows environment for ease of learning and operation regardless of whether the user is a beginner or frequent user.
- Application environment for project development is via a hierarchical tree. All the elements of the project can be activated by directly clicking the mouse button on the tree object providing comprehensive access and views of the working project.
- Easy entry methods which incorporate both the keyboard and mouse as entry devices. No matter whether on site or in an office environment the software can be operated with ease and efficiency.
- Provides various types of connections to the PLC via a PC. Connections include serial, USB, Ethernet / Internet and Modem. For every different connection WinProladder provides a session name to associate the setting of the communication parameters, such as port no., baud rate, IP address, phone number, etc.

- On-Line, Run-Time program editing
- Program testing
- Program comments
- Project oriented program
- Ladder program editing screen
- Status monitor and control
- Mnemonic ladder instruction display window
- Ladder diagram with comments
- Element comment editing
- Off-Line Simulation

Instruction Sets

Sequential instructions

Instruction	Operand	Ladder symbol	Function
ORG	$\begin{gathered} \mathrm{X}, \mathrm{Y}, \mathrm{M}, \\ \mathrm{~S}, \mathrm{~T}, \mathrm{C} \end{gathered}$	$\bullet \longmapsto$	Network starts by an A contact
ORG NOT		\bullet / \longmapsto	Network starts by a B contact
ORG TU		\bullet - \uparrow -	Network starts by a TU contact
ORG TD		- $\backslash \downarrow$ -	Network starts by a TD contact
ORG OPEN		-	Network starts by an open contact
ORG SHORT		$\bullet \quad$ -	Network starts by a short contact
LD	$\begin{gathered} \mathrm{X}, \mathrm{Y}, \mathrm{M}, \\ \mathrm{~S}, \mathrm{~T}, \mathrm{C} \end{gathered}$	¢ - •	Branch line starts by an A contact
LD NOT		\downarrow / \longmapsto	Branch line starts by a B contact
LDTU		\downarrow ¢	Branch line starts by a TU contact
LDTD		$\downarrow \downarrow$ -	Branch line starts by a TD contact
LD OPEN		¢ -	Branch line starts by an open contact
LD SHORT		\downarrow -	Branch line starts by a short contact
AND	$\begin{gathered} \mathrm{X}, \mathrm{Y}, \mathrm{M}, \\ \mathrm{~S}, \mathrm{~T}, \mathrm{C} \end{gathered}$	$\rightarrow \longmapsto$	Serial connect with an A contact
AND NOT		$\rightarrow-1 /$	Serial connect with a B contact
AND TU		$\rightarrow-\uparrow \longmapsto$	Serial connect with a TU contact
AND TD		$\cdots \downarrow \mid$ •	Serial connect with a TD contact
AND OPEN		\rightarrow -	Serial connect with an open contact
AND SHORT		$\rightarrow \quad$	Serial connect with a short contact

Step ladder instructions (SFC)

Instruction	Operand	Ladder symbol	Function
STP	Snnn	STP-	Define STEP program
STPEND		$-\boxed{\text { STPEND }}$	STEP program end

Instruction	Operand	Ladder symbol	Function
TO	Snnn	- TO	STEP divergence
		FROM	STEP convergence

Function instructions

Category	NO.	Instruction	Derivative	Function
Timer		Tnnn		General timer instruction (T0 ~ T255)
Counter		Cnnn		General counter instruction (C0 ~ C255)
	7	UDCTR	D	16 or 32-bit up/down counter
Setting / Resetting		SET	DP	Set all bits of register or a discrete point to 1
		RST	DP	Clear all bits of register or a discrete point to 0
	114	Z-WR	P	Zone set or clear
Digital operation	4	DIFU		Take differential up of the node status to operand
	5	DIFD		Take differential down of the node status too operand
	10	TOGG		Toggle the coil status
	11	(+)	DP	$\mathrm{Sa}+\mathrm{Sb} \rightarrow \mathrm{D}$
	12	(-)	DP	Sa-Sb \rightarrow D
	13	(\times)	DP	$\mathrm{Sa} \times \mathrm{Sb} \rightarrow \mathrm{D}$
	14	(/)	DP	$\mathrm{Sa} / \mathrm{Sb} \rightarrow \mathrm{D}$
	15	(+1)	DP	Add 1 to D
	16	(-1)	DP	Subtract 1 from D
	23	DIV48	P	48 bits integer division $\mathrm{Sa} / \mathrm{Sb} \rightarrow \mathrm{D}$
	24	SUM	DP	Sum of N consecutive registers
	25	MEAN	DP	Average of N consecutive registers
	26	SQRT	DP	Square root of S
	27	NEG	DP	Two's complement of D (Negative number)
	28	ABS	DP	Absolute value of D
	29	EXT	P	Extend 16 bits into 32 bits
	30	PID	P	PID calculation
	31	CRC16	P	CRC16 calculation
	32	ADCNV		Offset and full scale conversion for analog input
	33	LCNV	P	Linear conversion
	34	MLC	P	Multiple linear conversion

Category	NO.	Instruction	Derivative	Function
	200	$\stackrel{\mathrm{I}}{\mathrm{F}}$	DP	Integer to floating point number conversion
	201	$\mathrm{F} \rightarrow \mathrm{I}$	DP	Floating point number to integer conversion
	202	FADD	P	Addition of floating point number
	203	FSUB	P	Subtraction of floating point number
	204	FMUL	P	Multiplication of floating point number
	205	FDIV	P	Division of floating point number
	206	FCMP	P	Comparison of floating point number
	207	FZCP	P	Zone comparison of floating point number
	208	FSQR	P	Square root of floating point number
	209	FSIN	P	SIN trigonometric function
	210	FCOS	P	COS trigonometric function
	211	FTAN	P	TAN trigonometric function
	212	FNEG	P	Change sign of floating point number
	213	FABS	P	Absolute value of floating point number
	214	FLN	P	Floating point napierian logarithm
	215	FEXP	P	Floating point exponential function
	216	FLOG	P	Floating point logarithm
	217	FPOW	P	Floating point power function
	218	FASIN	P	Floating point arc sine function
	219	FACOS	P	Floating point arc cosine function
	220	FATAN	P	Floating point arc tangent function
$\begin{aligned} & \text { 응 } \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	18	AND	DP	Sa AND Sb
	19	OR	DP	Sa OR Sb
	35	XOR	DP	Sa XOR Sb
	36	XNR	DP	Sa XNR Sb
Comparison	17	CMP	DP	Value Compare
	37	ZNCMP	DP	Zone Compare

(Continue)

Category	NO.	Instruction	Derivative	Function
	8	MOV	DP	Move S to D
	9	MOV/	DP	Inverse S and move to D
	40	BITRD	DP	Move the Bit-N of S to FO
	41	BITWR	DP	Write INB input to the Bit-N of D
	42	BITMV	DP	Move the Bit-Ns of S to the Bit -Nd of D
	43	NBMV	DP	Move the Nibble-Ns of S to the Nibble-Nd of D
	44	BYMV	DP	Move the Byte-Ns of S to the Byte-Nd of D
	45	XCHG	DP	Exchange Da and Db
	46	SWAP	P	Swap the High-Byte of D with the Low-Byte of D
	47	UNIT	P	Take Nb0 of N words to form a Word
	48	DIST	P	Distribute N Nb of S to NbO of N Words
	49	BUNIT	P	Low byte of words re-unit
	50	BDIST	P	Words split into multi-byte
	160	RW-FR	DP	File register access
	161	WR-MP		Write memory pack
	162	RD-MP	P	Read memory pack
	6	BSHF	DP	Shift D right 1 bit or left 1 bit
	51	SHFL	DP	Shift D left N bits
	52	SHFR	DP	Shift D right N bits
	53	ROTL	DP	Rotate D left N bits
	54	ROTR	DP	Rotate D right N bits
응 0	20	$\rightarrow \mathrm{BCD}$	DP	Convert S into BCD
	21	$\rightarrow \mathrm{BIN}$	DP	Convert S into Binary
	55	$B \rightarrow G$	DP	Binary to Gray code conversion
	56	$\mathrm{G} \rightarrow \mathrm{B}$	DP	Gray code to Binary conversion
	57	DECOD	P	Decode the Ns ~ NI of S
	58	ENCOD	P	Encode the Ns ~ NI of S
	59	\rightarrow 7SG	P	Convert N+1' Nb of S into 7-segment code
	60	\rightarrow ASC	P	Convert character/number into ASCII code
	61	\rightarrow SEC	P	Convert hour, minute, second by seconds
	62	\rightarrow HMS	P	Convert second by hour, minute and second
	63	\rightarrow HEX	P	Convert ASCII code into hexadecimal
	64	\rightarrow ASCII	P	Convert hexadecimal into ASCII code
	0	MC		Master control loop start
	1	MCE		Master control loop end
	2	SKP		The start of the skip loop
	3	SKPE		The end of the skip loop
		END		Terminate the execution of program (for debugging)
	22	BREAK	P	Exit from FOR-NEXT Ioop
	65	LBL		Define the string as label
	66	JMP	P	Jump instruction
	67	CALL	P	Call instruction
	68	RTS		Subroutine return instruction
	69	RTI		Interrupt return instruction
	70	FOR		The start of the FOR loop
	71	NEXT		Return point of FOR loop
	74	IMDIO	P	Refresh I/O immediately
	76	TKEY	D	10 keys input convenient instruction
	77	HKEY	D	16 keys input convenient instruction
	78	DSW	D	Thumbwheel switch input convenient instruction
	79	7SGDL	D	7 -segment multiplexing display convenient Instruction
	80	MUXI		Multiplexing input convenient instruction
	81	PLSO	D	Pulse output(PSO) instruction
	82	PWM		Pulse Width Modulation (PWM) output instruction
	83	SPD		Pulse speed detection instruction
	84	TDSP		7/16-segment LED display control
	86	TPCTL		PID temperature control
	139	HSPWM		High speed PWM pulse output

Category	NO.	Instruction	Derivative	Function
	87	T. 01 S		0.01 S time base accumulative timer
	88	T.1s		0.15 time base accumulative timer
	89	T1S		1S time base accumulative timer
Monitor and control	90	WDT	P	Set watchdog timer
	91	RSWDT	P	Reset watchdog timer
HSC/HST	92	HSCTR	P	Read CV of hardware high speed counter/timer
	93	HSCTW	P	Write CV or PV of hardware high speed counter/timer
Text	94	ASCWR		Output ASCII message
Ascend/ Descend	95	RAMP		Ascending/Descending convenient instruction
	98	RAMP2		Tracking type RAMP function for D/A output
Communication	150	M-BUS		Modbus protocol communication
	151	CLINK		Fatek CPU link/Generic protocol communication
	100	$\mathrm{R} \rightarrow \mathrm{T}$	DP	Move register Rs to the table Td
	101	$T \rightarrow R$	DP	Move the Rp of table Ts to register Rd
	102	$\mathrm{T} \rightarrow \mathrm{T}$	DP	Move the Rp of table Ts to the Rp of table Td
	103	BT_M	DP	Move table Ts to table Td
	104	T_SWP	DP	Swap Ta and Tb
	105	R-T_S	DP	Search Rs from table Ts
	106	T-T_C	DP	Compare table Ta and table Tb
	107	T_FIL	DP	Fill Rs into Td table
	108	T_SHF	DP	Shift table left or right
	109	T_ROT	DP	Rotate table left or right
	110	QUEUE	DP	First in first out (Queue) instruction
	111	STACK	DP	First in last out (Stack) instruction
	112	BKCMP	DP	Compare Rs with zone defined by two tables
	113	SORT	DP	Sort the table
	120	MAND	P	AND two matrixes
	121	MOR	P	OR two matrixes
	122	MXOR	P	Exclusive OR (XOR) two matrixes
	123	MXNR	P	Exclusive NOR (XNR) two matrixes
	124	MINV	P	Inverse matrix
	125	MCMP	P	Compare two matrixes and find out the differences between two matrixes
	126	MBRD	P	Read the bit of a matrix pointed by pointer
	127	MBWR	P	Write the bit of a matrix pointed by pointer
	128	MBSHF	P	Shift matrix left 1 bit or right 1 bit
	129	MBROT	P	Rotate matrix left 1 bit or right 1 bit
	130	MBCNT	P	Count the number of bit whose value is 1 or 0 in the matrix
	140	HSPSO		High-speed pulse output
	141	MPARA		Set NC position parameters
	142	PSOFF	P	Force to stop pulse output
	143	PSCNV	P	Convert pulse count into mechanical value for display
	147	MHSPO		Multi-Axis high speed pulse output
	148	MPG		Manual pulse generator for positioning
Interrupt control	145	EN	P	Enable external input or peripheral interrupt
	146	DIS	P	Disable external input or peripheral interrupt
	170	=	D	Equal to compare
	171	>	D	Greater than compare
	172	<	D	Less than compare
	173	<>	D	Not equal to compare
	174	>=	D	Greater than or equal to compare
	175	=<	D	Less than or equal to compare
Other	190	STAT		Read system status

Dimensions

Figure 1

W	Model
90 mm	FBs-20M $\triangle, F B s-24 M \triangle, F B s-24 X Y$ FBs-16TC,FBs-16RTD
130 mm	FBs-32M $\triangle, F B s-40 M \triangle, F B s-40 X Y$
175 mm	FBs-44MN $\triangle, F B s-60 M \triangle, F B s-60 X Y$ FBs-30GM

Figure 2

Figure 4

Figure 3

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Module Name			Specifications
	Basic Main Units	FBs-10MA $\triangle \triangle-\bigcirc-C$	6 points 24 VDC digital input (4 points medium speed 20KHz, 2 points medium speed total 5 KHz); 4 points relay or transistor output (4 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3); I/0 is not expandable
		FBs-14MA $>\triangle-$ - - C	8 points 24 VDC digital input (4 points medium speed $20 \mathrm{KHz}, 4$ points medium speed total 5 KHz); 6 points relay or transistor output (6 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3); I/0 is not expandable
		FBs-20MA $\triangle \triangle-\bigcirc-C$	12 points 24 VDC digital input (6 points medium speed $20 \mathrm{KHz}, 6$ points medium speed total 5 KHz); 8 points relay or transistor output (8 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3)
		FBs-24MA $>\triangle-\bigcirc-\mathrm{C}$	14 points 24 VDC digital input (8 points medium speed $20 \mathrm{KHz}, 6$ points medium speed total 5 KHz); 10 points relay or transistor output (8 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3)
		$\begin{aligned} & \text { FBs-32MA } \diamond \triangle-\text { - }-\mathrm{C} \\ & \text { FBs-32MB } \diamond \triangle-\text { - }-\mathrm{C} \end{aligned}$	20 points 24VDC digital input (8 points medium speed 20KHz, 8 points medium speed total 5 KHz); 12 points relay or transistor output (8 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3); (MB is detachable terminal block)
		$\begin{aligned} & \text { FBs-40MA } \diamond \triangle-\text { - }-\mathrm{C} \\ & \text { FBs-40MB } \diamond \triangle-\text { - }-\mathrm{C} \end{aligned}$	24 points 24VDC digital input (8 points medium speed 20KHz, 8 points medium speed total 5 KHz); 16 points relay or transistor output (8 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3); (MB is detachable terminal block)
		$\begin{aligned} & \text { FBs-60MA } \diamond \triangle-\text { - }-\mathrm{C} \\ & \text { FBs-60MB } \diamond \triangle-(-)-C \end{aligned}$	36 points 24VDC digital input (8 points medium speed 20KHz, 8 points medium speed total 5 KHz); 24 points relay or transistor output (8 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 3); (MB is detachable terminal block)
	Advanced Main Units	FBs-10MC $>\Delta$ - 0	6 points 24 VDC digital input (2 points high speed 200 KHz , 2 points medium speed $20 \mathrm{KHz}, 2$ points medium speed total 5 KHz); 4 points relay or transistor output (2 points high speed 200KHz, 2 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; I/ 0 is not expandable
		FBs-14MC $>\triangle$ - 0	8 points 24VDC digital input (2 points high speed 200KHz, 2 points medium speed $20 \mathrm{KHz}, 4$ points medium speed total 5 KHz); 6 points relay or transistor output (2 points high speed 200KHz, 4 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; I/ 0 is not expandable
		FBs-20MC $\diamond \triangle$ - ©	12 points 24 VDC digital input (4 points high speed 200KHz, 2 points medium speed 20 KHz , 6 points medium speed total 5 KHz); 8 points relay or transistor output (4 points high speed 200KHz, 4 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-24MC $>\triangle$ - 0	14 points 24 VDC digital input (4 points high speed 200KHz, 4 points medium speed 20 KHz , 6 points medium speed total 5 KHz); 10 points relay or transistor output (4 points high speed 200KHz, 4 points medium sped 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-32MC $>\triangle$ - ©	20 points 24VDC digital input (6 points high speed 200KHz, 2 points medium speed 20KHz, 8 points medium speed total 5 KHz); 12 points relay or transistor output (6 points high speed 200KHz, 2 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-40MC $>\triangle$ - ©	24 points 24 VDC digital input (6 points high speed 200 KHz , 2 points medium speed $20 \mathrm{KHz}, 8$ points medium speed total 5 KHz); 16 points relay or transistor output (6 points high speed 200KHz, 2 points medium speed 20KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-60MC $>\triangle$ - 0	36 points 24VDC digital input (8 points high speed 200KHz, 8 points medium speed total 5 KHz); 24 points relay or transistor output (8 points high speed 200KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
	NC Positioning Main Units	FBs-20MN $>\triangle$ - 0	2 sets (1 axis) 920 KHz 5 VDC digital differential input, 10 points 24VDC digital input (4 points high speed 200KHz, 6 points medium speed total 5KHz); 2 sets (1 axis) 920KHz 5VDC digital differential output, 6 points relay or transistor output (average high speed 200KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-32MN $\gg-$ -	4 sets (2 axes) 920KHz 5VDC digital differential input, 16 points 24VDC digital input (4 points high speed 200KHz, 8 points medium speed total 5 KHz); 4 sets (2 axes) 920KHz 5VDC digital differential output, 8 points relay or transistor output (4 points high speed 200KHz); 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
		FBs-44MN $>\triangle$ - 0	8 sets (4 axes) 920 KHz 5 VDC digital differential input, 20 points 24 VDC digital input (8 points medium speed total 5 KHz); 8 sets (4 axes) 920 KHz 5 VDC digital differential output, 8 points relay or low speed transistor output; 1 RS232 or USB port (expandable up to 5); built-in RTC; detachable terminal block
	Expansion Power Supply	FBs-EPW-AC/D24	Power supply of 100~240VAC or 24VDC input for expansion module; 3 sets output power with 5VDC, 24VDC, and 24VDC, 14W capacity
	DIO Expansion Units	FBs-24XY \diamond - 0	14 points 24VDC digital input, 10 points relay or transistor output, built-in power supply
		FBs-40XY \diamond - 0	24 points 24VDC digital input, 16 points relay or transistor output, built-in power supply
		FBs-60XY \diamond - 0	36 points 24VDC digital input, 24 points relay or transistor output, built-in power supply
	DIO Expansion Modules	FBs-8X	8 points 24 VDC digital input
		FBs-8Y \diamond	8 points relay or transistor output
		FBs-8XY \diamond	4 points 24VDC digital input, 4 points relay or transistor output
		FBs-16Y \diamond	16 points relay or transistor output
		FBs-16XY \diamond	8 points 24VDC digital input, 8 points relay or transistor output
		FBs-20X	20 points 24VDC digital input
		FBs-24XY \diamond	14 points 24VDC digital input, 10 points relay or transistor output
		FBs-40xY \diamond	24 points 24VDC digital input, 16 points relay or transistor output
		FBs-60XY \diamond	36 points 24VDD digital input, 24 points relay or transistor output
		FBs-24X	24 points high-density 24VDC digital input, 30 pins header with latch
		FBs-24YT/J	24 points high-density transistor SINK(T) or SOURCE(J) output (0.1A max.), 30 pins header with latch
	Thumbwheel Switch Module	FBs-32DGI	8 sets 4 digits (total 32 digits) thumbwheel switch (or 128 points independent switch) multiplex input module, 30 pins header connector
	16/7 Segment LED Display	FBs-7SG1	1 set 8 digits 7 -segment/4 digits 16 -segment LED display (or 64 points independent LED) output display module, 16 pins header connector
	Modules	FBs-7SG2	2 sets 8 digits 7 -segment/4 digits 16-segment LED display (or 128 points independent LED) output display module, 16 pins header connector
	AIO Modules	FBs-2DA	2 channels, 14-bit analog output module (-10~10V, 0~10V or -20~20mA, $0 \sim 20 \mathrm{~mA}$)
		FBs-4DA	4 channels, 14-bit analog output module (-10~10V, 0~10V or -20~20mA, $0 \sim 20 \mathrm{~mA}$)
		FBs-4A2D	4 channels, 14-bit analog input (same specification as 6AD) +2 channels, 14-bit analog output (same specification as 2DA) combo module
		FBs-6AD	6 channels, 14-bit analog input module (-10~10V, 0~10V or -20~20mA, 0~20mA)
	Temperature Measurement Modules	FBs-2TC	2 channels, thermocouple temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.
		FBs-6TC	6 channels, thermocouple temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.
		FBs-16TC	16 channels, thermocouple temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.
		FBs-6RTD	6 channels, RTD temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.
		FBs-16RTD	16 channels, RTD temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.
		FBs-6NTC	6 channels, NTC temperature input module with $0.1^{\circ} \mathrm{C}$ resolution.

(Continue)

Module Name			Specifications
	AI + Temperature Measurement Combo Modules	FBs-2A4TC	2 channels, 14-bit analog input (same specifications as 6AD) +4 channels thermocouple temperature input (same specifications as 6TC) combo module
		FBs-2A4RTD	2 channels, 14 -bit analog input (same specifications as 6AD) +4 channels RTD temperature input (same specifications as 6RTD) combo module
	Voice Modules	FBs-VOM	Built-in 1MB memory (play continuously up to 2 minutes), extendable 4GB SD card(play continuously up to 8,000 minutes) voice module, 245 messages, output 2 W
	Load Cell Module	FBs-1LC	1 channel, load cell measurement module with 16-bit resolution (including sign bit)
	Potential Meter Module	FBs-4PT	4 channels, 14-bit potential meter input module (Impedance range: 1~10K Ω)
	Communication Modules	FBs-CM22	2 ports RS232 (Port3 + Port 4) communication module
		FBs-CM55	2 ports RS485 (Port3 + Port 4) communication module
		FBs-CM25	1 port RS232 (Port3) + 1 port RS485 (port 4) communication module
		FBs-CM25E	1 port RS232 (Port3) + 1 port RS485 (port 4) + Ethernet network interface communication module
		FBs-CM55E	1 port RS485 (Port3) + 1 port RS485 (port 4) + Ethernet network interface communication module
		FBs-CMZB	ZigBee communication module
		FBs-CMZBR	ZigBee communication repeater
		FBs-CMGSM	GSM wireless communication module
		FBs-CM25C	General purpose RS232 to RS485/RS422 communication interface converter with photocouple isolation
		FBs-CM5R	General purpose RS485 repeater with photocouple isolation
		FBs-CM5H	General purpose 4 ports RS485 HUB with photocouple isolation, RS485 can be connected as star connection
	Communication Boards	FBs-CB2	1 port RS232 (Port 2) communication board
		FBs-CB22	2 ports RS232 (Port 1+ Port 2) communication board
		FBs-CB5	1 port RS485 (Port 2) communication board
		FBs-CB55	2 ports RS485 (Port 1+ Port 2) communication board
		FBs-CB25	1 port RS232 (Port 1) + 1 port RS485 (Port 2) communication board
		FBs-CBE	1 port 10 Base T Ethernet communication board
		FBs-CBEH	1 port 100 Base T Ethernet communication board
		FBs-CBCAN	1 port CANopen communication board
	AIO Boards	FBs-B2DA	2 channels, 12-bit analog output board (0~10V or 0~20mA)
		FBs-B2A1D	2 channels, 12-bit analog input + 1 channel, 12-bit analog output combo analog board ($0 \sim 10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$)
		FBs-B4AD	4 channels, 12-bit analog input board (0~10V or 0~20mA)
	Precision Load Cell Module	FBs-1HLC	1 channel, high precision weighing control module with 24-bit resolution
	3-Axis Motion Control Module	FBs-30GM	3-Axis with linear and circular interpolation advanced motional control module, 3 sets of 200 KHz high speed pulse input, 3 sets of 500 KHz high speed pulse output, 14 points main unit, 16M Bytes program capacity, 20K Words retentive file register, built-in RS485 and Ethernet, 7.62 mm detachable terminal block
	Simple HMI	FBs-BDAP	Board type Data Access Panel
		FBs-BPEP	Board type Parameter Entry Panel
		FBs-PEP/PEPR	Multi characters with graphics-based Parameter Entry Panel, built-in RFID Read/Write module with PEPR
		FBs-DAP-B/BR	16×2 LCD character display, 20 keys keyboard, 24VDC power supply, RS485 comm. port, built-in RFID Read/Write module with BR
		FBs-DAP-C/CR	16×2 LCD character display, 20 keys keyboard, 5VDC power supply, RS232 comm. port, built-in RFID Read/Write module with CR
	RFID Card	CARD-H	Read / Write wireless card (for FBs-DAP-BR/CR and FBs-PEPR)
	Programming Devices	FP-08	FBs- Series PLC handheld programmer
		Winproladder	FATEK-PLC Winproladder Programming software
	Memory Pack	FBS-PACK	FBs-PLC program memory pack with 20K Words program, 20K Words register, write protection switch
	PWMDA Module	PWMDA	10-bit single channel pulse width modulation(PWM) 0~10V analog output (AO) module
	USB- RS232 Converter Cable	FBs-U2C-MD-180	Communication converter cable with standard USB AM connector to RS232 MD4M connector (used in standard PC USB to FBs main unit Port 0 RS232), length 180 cm
	Communication Cables	FBs-232P0-9F-150	MD4M to DB9F communication cable (FBs main unit Port 0 RS232 connect to standard DB9M), length 150 cm
		FBs-232PO-9M-400	MD4M to DB9M communication cable (FBs main unit Port 0 RS232 connect to DB9F), length 400 cm
		FBS-232PO-MD-200	MD4M to MD4M communication cable (FBs main unit Port 0 RS232 connect to FBs-PEP/PEPR), length 200 cm
		FBs-232P0-MDR-200	MD4M to 90 ${ }^{\circ} \mathrm{MD4M}$ communication cable (FBs main unit Port 0 RS232 connect to FBs-PEP/PEPR), length 200cm
	High Density DIO Connection Cable	HD30-22AWG-200	High density modules(FBs-24X, FBs-24YT/J, FBs-32DGI) connector 30pin Socket, 22AWG I/0 cable length200cm
	16/7-Segment LED Display	DBAN.8-nR	0.8 " 4-digit 16 -segment LED display, n means R(Red) 16 -segment LED characters display installed, can be 1~4
		DBAN.2.3-nR	2.3" 4-digit 16 -segment LED display, n means R(Red) 16 -segment LED characters display installed, can be 1~4
		DB.56-nR	0.56 " 8 -digit 7-segment display, n means R(Red) 7-segment LED characters display installed, can be 1~8
		DB.8-nR	0.8" 8 -digit 7-segment display, n means $R($ Red $) 7$-segment LED characters display installed, can be 1~8
		DB2.3-nR	2.3" 8-digit 7-segment display, n means R (Red) 7 -segment LED characters display installed, can be 1~8
		DB4.0-nR	4.0" 4-digit 7-segment display, n means R (Red) 7 -segment LED characters display installed, can be 1~4
	Training Box	FBs-TBOX	$46 \mathrm{~cm} \times 32 \mathrm{~cm} \times 16 \mathrm{~cm}$ suitcase, containing FBs-24MCT main unit. FBs-CM25E communication module (RS232 + RS485 + Ethernet network), 14 simulated input switches, 10 external relay output, Doctor terminal outlet I/0, peripherals such as stepping motor, encoder, 7 -segment display, 10 of 10 mm LED indicator, thumbwheel switch, and 16 key keyboard.

[^0]3. © : AC - 100~240VAC power supply

D12 - 12VDC power supply
D24-24VDC power supply
5. The unmarked frequencies of Digital Input (DI) or Digital Output (DO) are low speed.

 FATEK ${ }^{\circ}$ automation corporation

26FL., NO. 29, SEC. 2, JUNGJENG E. RD.,
DANSHUEI DIST., NEW TAIPEI CITY 25170, TAIWAN, R.O.C
TEL : +886-2-2808-2192
FAX : +886-2-2809-2618
E-mail : sales@fatek.com tech@fatek.com

Website : www.fatek.com

[^0]: 1. $\diamond: \mathrm{R}$ - Relay output ; T—Transistor SINK(NPN) output J-Transistor SOURCE (PNP) output
 2. $\triangle: 2$ - built-in RS232 port ; U — built-in USB port (non-standard)
